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This article describes a number of lessons learned in deploying automated planning and
scheduling systems for space applications at the Jet Propulsion Laboratory. Specifically, we
describe issues relating to: how plan representation can affect plan quality ; how to acquire,
validate and maintain planning knowledge bases: and how planning and execution can be
integrated. These issues are described in the context of several fielded systems in the areas
of science data analysis, ground station automation, and spacecraft autonomy.

In the past several years, the artificial intelligence group at the Jet Propul-
sion Laboratory (JPL) has deployed a number of real-world planning
systems, (Chien et al., 1997a). These systems were built to provide automated
planning capability for a variety of domains including spacecraft command
generation and validation, science data analysis, and control of deep space
antennas. In fielding these systems, a number of unforeseen challenges were
encountered, and some valuable insights into the process of building and
deploying AI planning and scheduling systems have been gained. This paper
describes some of the difficult issues encountered and discusses a sampling of
the methods used to address them. By describing some of these issues, it is
hoped that further interest in research in these areas is stimulated and close
ties between the research, applied research, and application communities is
fostered.

Specifically, in this paper, four key issues are focused on relating to plan-
ning and scheduling systems:

1. Integrating hierarchical task networks (HTNs) and operator-based plan-
ning systems (Estlin et al., 1997)—it has been found that most problems
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involve both parts that are most naturally represented in HTN format
and parts that are most naturally represented in an operator-based
format. Significant work is needed to formalize practical HTN and oper-
ator representations. In addition, the field needs to develop standard
metaphors for representing commonly occurring planning domain
patterns—similar to design patterns in software engineering (Pree, 1995).

2. Representing and reasoning about plan quality (Chien et al., 1996}—most
planning and scheduling problems involve a wide range of solutions.
Allowing the user to easily represent preferences over this space and con-
structing a planning system that can reason intelligently about this space
is the key to correctly solving most planning problems. Most systems to
date have used implicit or crude, approximate models of user objective
functions.

3. Knowledge acquisition; representing knowledge and maintenance of
planning knowledge bases (Smith et al., 1997; Chien, 1998)—researchers
have not devoted sufficient effort to the intricacies of encoding, validating,
and maintaining knowledge within a planning system. Our experiences -
were that this effort is a considerable fraction (if not the majority) of the
cost of deployment and operations. Further work directed at the develop-
ment of tools, processes, and methodologies to reduce this cost is a high
payoff area of work for planning researchers and practitioners alike.

4. Integration of planning and execution (Chien et al, 1999); integration of
the planning system into the operational context (Chien et al, 1996)}—
most planning research has focused on a batch formulation of the plan-
ning or scheduling problem. However, in reality, a planning system must
be integrated into a process workflow, which rarely presents problems in
such a clean fashion. Instead, plans are rarely generated from scratch, and
are constantly revised and updated to reflect a changing understanding of
the problem. In order to facilitate insertion of planning and scheduling
technology into such an environment, planning and scheduling systems
must provide the capabilities to work in concert with human processes
and operate in continuous planning and plan revision modes.

It has been our experience that fielding applications provide excellent
insights into research problems, some of which are not addressed by the
academic research community. In many cases it is only through the fielding
of real world systems that many shortcomings of current thinking become
apparent,

The remainder of this paper is organized as follows. First, several systems
are described that the artificial intelligence group has fielded in order to
provide a context for describing the lessons learned. Next, each of the issues
that have been briefly outlined above are described in further detail: integra-
tion of HTN and operator-based planning paradigms, representing and



Lessons Learned Deploying Space Planning Systems 163

reasoning about plan quality, knowledge base management, and integration

of planning and execution. Finally, the conclusions of the paper are present-
ed.

FIELDED SYSTEMS AND DOMAINS

To provide a context for this discussion, applications from three appli-
cation areas are described, science data analysis antenna ground station
automation, and spacecraft commanding. Within these three domains,
several fielded AI planning and scheduling systems will be discussed. These
are the application areas and systems that will be used later in the paper to
highlight issues in developing and deploying planning systems.

Science Data Analysis

The artificial intelligence group has developed a number of planning
systems to assist scientists in preparing and analyzing NASAs vast store-
house of scientific data. The first of these was the multimission VICAR
planner (MVP), an automated image processing system. The multi-mission
VICAR planner was first deployed in 1994 (Chien, 1994) and continued to
evolve through 1996 (Chien & Mortensen, 1996). The successful MVP appli-
cation lead to the later deployment of the automated SAR image processor
(ASIP) system (Fisher et al, 1997; Fisher et al, 1998b). Both MVP and
ASIP were designed to relive scientists from the significant effort of pre-
paring science image data for analysis (Chien et al.,, 1997b). Previous to the
existence of MVP and ASIP, a scientist or science team would employ pro-
grammers to link together processing libraries to prepare the science data.
Both MVP and ASIP embody a significant body of knowledge regarding
image processing and their respective science disciplines. This knowledge
allows MVP and ASIP to accept a set of high level goals regarding the
attributes of the desired image product and to produce an executable script
to produce the requested processed data from the available raw data. In
summary, these planning systems act as an intelligent interface agent to the
science data—enabling scientists to request the data by specifying what data
they want rather than being forced to know how to produce it.

In order to illustrate how MVP assists in VICAR planetary image pro-
cessing, a typical example of MVP usage is provided to ground the problem
and the inputs and outputs required by MVP. The three images, shown on
the left in Figure 1 are of the planet Earth taken during the Galileo Earth 2
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FIGURE 1. Raw and processed image files.

flyby in December 1992. However, many corrections and processing steps
must be applied before the images can be used. First, errors in the compres-
sion and transmission of the data from the Galileo spacecraft to receivers on
Earth have resulted in missing and noisy lines in the images. Line fill-in and
spike removals are therefore desirable. Second, the images should be map-
projected to correct for the spatial distortion that occurs when a spherical
body is represented on a flat surface. Third, in order to combine the images,
one needs to compute common points between the images and overlay them
appropriately. Fourth, because multiple images taken with different camera
states are being combined, the images should be radiometrically corrected
before combination.

The multi-mission VICAR planner enables the user to input image pro-
cessing goals through a graphical user interface with most goals as toggle
buttons on the interface. A few options require entering some text——usually
function parameters that will be included as literals in the appropriate place
in the generated VICAR script. Figure 2 shows the processing goals input to
MVP,

Using the image processing goals and its model of image processing pro-
cedures, MVP constructs a plan of image processing steps to achieve the
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display automatic nav residual error perform manual navigation
radiometric correction pixel spike removal

missing line fillin uneven bit weight correction
no limbs present in images perform automatic navigation
display automatic nav residual error perform manual navigation
display man nav residual error map project with parameters ...
mosaic images smooth mosaic seams using DN

FIGURE 2. Example problem goals.

requested goal. Figure 3 shows the plan structure for a portion of the overall
image processing plan.

In this graph, nodes represent image processing actions (programs) and
required image states to achieve the larger image processing goal. This plan
is translated into a VICAR script which, when run, performs the desired
image corrections and constructs a mosaicked image of the three input files.
Figure 4 shows the MVP-generated VICAR code corresponding to this
subplan which performs image navigation. Image navigation is the process
of determining the matrix transformation to map from the 2-dimensional
(line, sample) coordinate space of an image to a 3-dimensional coordinate
space using information on the relative position of the imaging device
(spacecraft position) and a model of the target being imaged (e.g., the planet-
ary body) for a Galileo image. The finished result of the image processing
task is shown at the right in Figure 1. The three original images now appear
as a single mosaicked image map projected with missine and corrupted lines
filled in.

Thus MVP allows the user to go directly from high-level image pro-
cessing goals to an executable image processing program (called a procedure
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Congeptual Steps. VICAR Code
get initial navigation —. IBISNAV OUT="fle_{ist.NAV" PLANET=target 0_10 +
information PROJECT="GLL * SEDR=@RIMSRC FILENAME="fila_listilist'
1 Construct initial overiap pairs MOSPLOT
construct initial MOSPLOT inp="file_list NAV" ni=lines_0_6 ns=samples_0_6 project="GLL *
overlap pairs == | mos.avertap I Just a holder for the overlap plat.
dcl copy printronxplt mos.overap
del print/nofeed mos .overtap
refine initiat — I Refine initial overlap pairs edibis
overtap pairs EDIBIS INP="file_fist. OVER"
. il Manmatch mosaic e ist
Navigate 11 i thers is no existing tiepointie.....
Ima g oS 1 Check if a iepoint file exists.
1t The following code is in written VMS
Manugd #1LOCAL STR STRING INIT =
Tiepoint find previous LET _ONFAIL 1??'{11"1”? H'Auowm the pdf to continue
. a flla is not found.
Selection tiepoint file DCL DEASSIGN NAME
(if present) DCL DEFINE NAME 'F$SEARCH("file_list. TP*)
LOCAL STR STRING
TRANSLOG NAME STR
LET _ONFAIL = "RETURN" Il Set PDF to retum on emor
IF (STR = ™)

MANMATCH INP=("file_list NAV",*file_list OVER") +
QUT="fle_list.TP" PROJECT="GLL “'SEDR FILENAME="file_list.ILIST"

use manmaich
program to 111 an old tiopoint e exists...
construct or Il The old tpfleis part of inpit and later overwrition.
refine iepoint ELSE
file MANMATCH INP=(fle_Ust NAV" "file_iist OVER""fle_list.TP") +
OUT="fle_list TP* PROJECT="GLL *'SEDR FILENAME="fl}_list ILIST*
| OMCOR2
;‘:‘;‘:";""gts OMCOR?2 INP=("file_list NAV" "fle_list, TP*) PROJECT="GLL " GROUND=@GOOD
Jo consiru OMCOR2 INP=(fle_list. NAV" "fls_ist. TP*) PROJECT="GLL ~ GROUND=@GOO0D

FIGURE 4. Sample VICAR code fragment.

definition file (PDi)). By insulaiing the user from many of the details of
image processing, productivity is enhanced. The user can consider more
directly the processing goals relevant to the end science analysis of the
image, rather than being bogged down in the details such as file format,
normalizing images, etc.

The multi-mission VICAR planner is often operated in a mixed-initiative
planning mode where the user can help direct the planning process. In
typical .usage; the analyst receives a request, determines which goals are
required to fill the request, and runs MVP to generate a VICAR script. The
analysts then runs this script and visually inspects the produced image(s) to
verify that the script has properly satisfied the request. In most cases, upon
inspection, the analyst determines that some parameters need to be modified
subjectively or goals reconsidered in context. This process typically con-
tinues several iterations until the analyst is satisfied with the image product.

Analysts estimated that MVP reduces the effort to generate an initial
PDF for an expert analyst from 1/2 a day to 15 minutes and reduces the
effort for a novice analyst from several days to one hour, representing over
an order of magnitude in speedup. The analysts also judged that the quality
of the PDFs produced using MVP are comparable to the quality of com-
pletely manually derived PDFs.

kst e
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Ground Station Automation for the Deep Space Network (DSN)

In this subsection the NASA domain for deep space network (DSN)
ground station automation is described. The DSN was established in 1958
and has since evolved into the largest and most sensitive scientific telecom-
munications and radio navigation network in the world. The purpose of the
DSN is to support unmanned interplanetary spacecraft missions and radio
and radar astronomy observations taken in the exploration of space. There
are three deep space communications complexes located in Camberra, Aus-
tralia, Madrid, Spain, and Goldstone, California. Each DSN complex oper-
ates a set of deep space stations consisting of a 70-meter, 34-meter, and
26-meter antenna. The function of the DSN is to receive telemetry signals
from spacecraft, transmit commands that control spacecraft operating
modes, generate the radio navigation data used to locate and guide a space-
craft to its destination, and acquire flight radio science, radio, and radar
astronomy, very long baseline interferometry (VLBI), and geodynamics mea-
surements.

In the past, the process of operating such stations has been labor and
knowledge intensive. Recently, efforts have been made to reduce the cost of
operations. One such effort has been in the area of automation. Many
approaches have been applied to automation control/commanding of differ-
ent types of systems. The Al group at JPL have worked on automating the
generation of control/command sequences. which can be run as control
scripts to operate the station (Fisher et ut. .593).

The deep space terminal (DS-T) is a prototype 34-meter deep space com-
munications station which was developed as a technology demonstration of
Sfully autonomous, lights-out, operations (Fisher et al.,, 1998a). Figure 5 shows
the 34-meter complex that was automated during the 34-meter demonstra-
tion. In the DS-T concept, each DS-T station operates autonomously, per-
forming tracks in a largely independent fashion. When requested to perform

FIGURE 5. 34m BWG antennas at Goldstone.
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a track, the DS-T station performs a number of tasks (at appropriate times)
required to execute the track. First, the DS-T station uses appropriate space-
craft navigation ephemeris and predict generation software in order to
produce the necessary antenna and receiver predict information required to
perform the track. Next, the DS-T station executes the precalibration
process, in which the antenna and appropriate subsystems (e.g., receiver,
exciter, telemetry processor, etc.) are configured in anticipation of the track.
During the actual track, the signal from the spacecraft must be acquired and
the antenna and subsystems must be commanded to retain the signal, adjust
for changes in the signal (such as changes in bit rate or modulation index as
transmitted by the spacecraft), and perform error recovery. Finally, at the
completion of the track, the station must be returned to an appropriate
standby state in preparation for the next track. All of these activities require
significant automation and robust execution including closed loop control,
retries, and contingency handling.

As part of the DS-T task, the AI group deployed a planning system to
automate the generation of control scripts. In order to provide automated
operations capability, the DS-T station employs tightly coupled state-of-the-
art hardware and software. Because of the complexity of operation of this
equipment, the DS-T script generator is needed to custom tailor the control
script for the specific combination of tracking goals (e.g., downlink, uplink,
ranging) (Estlin et al,, 1999). What makes this problem difficult is that many
tasks must be sequenced in order to command the station. Furthermore,
depending on the exact combination of services (or track goals) requested, .
different tasks may be required. Additionally, many of these tasks interact
depending on the overall set selected.

The DS-T script generator (SG) uses artificial intelligence planning tech-
niques to perform a complex software module reconfiguration process
(Chien et al, 1998). This process consists of piecing together numerous
highly interdependent smaller control scripts in order to produce a single
script to control the operations of the DS-T station. The general software
module reconfiguration problem encompasses a wide range of problems
including the two science data analysis problems described in the previous
section.

The core engine used in the SG is the automated scheduling and plan-
ning environment (ASPEN) (Fukanaga et al., 1997). The ASPEN system is a
reusable, configurable, generic planning/scheduling application framework
that can be tailored to specific domains to create plans/schedules. It has a
number of useful features including an expressive modeling language, a con-
straint management system for representing and maintaining antenna oper-
ability and/or resource constraints, a temporal reasoning system, and a
graphical interface for visualizing plans and states. For this domain, ASPEN
has been tailored to accept input antenna tracking goals and then produce
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the required command sequence necessary to create the requested link.

The control script produced by the SG sets up the track by performing
the following steps:

1. Configure the station during pretrack.

2. Provide the track service requested by commanding the antenna and sub-
systems to acquire and maintain lock on the signal throughout mode
changes.

3. Cleanup and shutdown the station at the completion of the track.

The DS-T concept was validated through a number of demonstrations.
The demonstrations began with the automation of partial tracks in April
1998, continued with I-day unattended operations in May, and concluded
with a 6-day autonomous “lights-out” demonstration in September 1998.
Throughout these demonstrations ASPEN was used to automatically gener-
ate the necessary command sequences for a series of Mars global surveyor
(MGS) downlink tracks using the equipment configuration at Deep Space
Station 26 (DSS26), a 34-meter antenna located in Goldstone, CA. These
command sequences were produced and executed in a fully autonomous
fashion with no human intervention. During the September demonstration,
DS-T performed all Mars Global Surveyor coverage scheduled for the Gold-
stone antenna complex. This corresponded to roughly 13 hours of contin-
uous track coverage per day.

As a component of the DS-T demonstrations, the SG performed flaw-
lessly, producing dynamically instantiated control scripts based on the
desired service goals for the communications pass as specified in the service
request. The use of such technology resulted in three primary benefits:

e Autonomous operations enabled by eliminating the need for hundreds of
manual inputs in the form of control directives. Currently, the task of
creating the communications link is a manual and time-consuming
process which requires operator input of approximately 700 control direc-
tives and the constant monitoring of several dozen displays to determine
the exact execution status of the system.

e Reduced the level of expertise required of an operator to perform a com-
munication track. Currently, the complex process requires a high level of
expertise from the operator, but through the development of the KB by a
domain expert this expertise is captured within the system itself,

e The KB provides a declarative representation of operation procedures.
Through the capture of this expertise the KB documents the procedural
steps of performing antenna communication services.
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Spacecraft Commanding

Generating command sequences for spacecraft operations can be a
laborious process requiring a great deal of specialized knowledge. Typically,
spacecraft command sets are large, with each command performing a low-
level task. There are often many interactions between the commands relating
to the state of the spacecraft. In addition, due to spacecraft power and
weight limitations, the resources available onboard spacecraft are often
scarce. These factors in combination make manual generation of command
sequences a difficult process. Because of the importance and expense of this
process, tools to assist in planning and scheduling spacecraft activities are
critical to reducing the effort (and hence cost) of mission operations.

The artificial intelligence group has an ongoing effort in developing and
deploying automated planning and scheduling technology for spacecraft
commanding. In 1997, a general system was deployed that uses artificial
intelligence planning and scheduling technology, which was used to auto-
matically generate command sequences for the DATA-CHASER shuttle
payload operations. The DATA-CHASER automated planner/scheduler
(DCAPS) architecture presented supports direct, interactive commanding,
rescheduling and repair, resource allocation, and constraint maintenance
(Chien et al,, 1999b).

The DATA-CHASER automated planner scheduler implements search
algorithms for two problems: initial schedule generation and schedule
repair/refinement. In initial schedule generation, DCAPS generates a default
schedule to perform science observations from the null schedule (ie., an
empty schedule). DATA-CHASER automated planner scheduler supports
domain specific and randomized initial schedule generation strategies. In
schedule repair/refinement, DCAPS accepts an existing schedule with con-
flicts (i.e., resource over subscription, state conflicts, etc.) and performs oper-
ations to make the schedule consistent with the spacecraft constraints.
DATA-CHASER automated planner scheduler implements this functional-
ity by using “iferative repair” search techniques (e.g., Zweben et al., 1994).
Basically, this technique iteratively selects a schedule conflict and performs
some action in an attempt to resolve the conflict. In iterative repair mode,
DCAPS is naturally well adapted for human interaction. In this mode, a
user can move, add, and delete activities in order to alter the schedule to
their preferences. DATA-CHASER automated planner scheduler can then
be invoked to repair state, resource, and temporal constraints caused by
these modifications. Using an automated planner/scheduler (e.g., DCAPS) in
this fashion, command sequence generation can be performed by scientists
who need not be spacecraft and sequence engineer experts. This allows the
scientist to become directly involved in the command sequencing process.
Additionally, if there are changes in the spacecraft state (e.g., faults) or user-
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defined goals (e.g., science opportunities), the repair algorithm allows simple
rescheduling that attempts to minimize disruption of the original schedule.
Finally, the highly restrictive payload resources and constraints are con-
stantly monitored and conflicts automatically avoided.

The DCAPS system was developed for operation of the DATA-
CHASER shuttle payload, which was developed and managed by students
and faculty of the University of Colorado at Boulder. DATA-CHASER is a
science payload, with a primary focus on solar observation. The main activ-
ities for the payload involve science instrument observations, data storage,
communication, and control of the power subsystem. Science is performed
using three solar observing instruments: the far ultraviolet spectrometer
(FARUS), soft X-ray and extreme ultraviolet experiment (SXEE), and
Lyman-alpha solar imaging telescope (LASIT). These are imaging devices
that operate at various spectra.

The payload resources include power, tape storage, local memory, the
three instruments, and the communication bus. DATA-CHASER is also
constrained by externally driven states such as the shuttle orientation and
external events such as shuttle venting of waste materials, which affect when
certaln science activities can be scheduled. Payload activities must be
sequenced while avoiding or resolving conflicts.

Carrying the DATA-CHASER payload, STS-85, the Space Shuttle Dis-
covery launched 7:41 AM PST on Thursday August 7, 1997 (Figure 6 shows
the DATA-CHASER payload in the shuttle b0 Mission operations,
including mission planning and schedulis ., weic ¢ rmed for the 2-week
flight. During the first 5 days of DATA-CHASER operations, DCAPS was
used in manual mode. In this mode, activities were placed manually and
DCAPS was used to validate constraints, identify constraint violations, and
generate the actual command files. During the last 7 days of the payload
operation, DCAPS was used to automatically generate schedules. In this

4

FIGURE 6. DATA-CHASER payload in STS-85 shuttle bay.
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phase the domain-specific initial schedule generator was used to generate an
initial schedule. Due to network lag times (DATA-CHASER was operated
primarily from Colorado Space Grant and due to machine shortages
DCAPS was running at JPL) use of the iterative repair techniques were
somewhat limited. However, this turned out not to impact operations sig-
nificantly; in many cases minor conflicts were repaired manually.

The DCAPS automated scheduling capability significantly impacted
DATA-CHASER mission operations. DATA-CHASER automated planner
scheduler enabled an 80% reduction in the amount of effort to produce
operations plans. Manual generation of a 6-hour operations plan would
require from 30-60 minutes in manual mode of operations and from 7-9
minutes using the DCAPS automated scheduling capability. This reduction
in effort is because DCAPS can automatically generate an acceptable or
near acceptable schedule very quickly. The number of modifications (if any)
to make a DCAPS generated schedule acceptable can be made far faster
than manually generating a schedule from scratch. DATA-CHASER
automated planner scheduler also enabled a 40% increase in science return.
Manually generated plans had 2-3 instrument scans per viewing
opportunity, whereas DCAPS-generated plans had 3-4 scans per viewing
opportunity. This is because DCAPS could directly monitor and track all of
the complex timing constraints involved in the instrument activities and
pack activities more tightly than operators manually placing instrument
activities. During this 7 days of DCAPS automated use, DCAPS scheduled a
total of 93 science scans and 202 puayload commands. Figure 7 shows a
payload operator using DCAPS to command the shuttle payload.

One significant feature of the DCAPS system is its declarative represen-
tation of flight rules and spacecraft constraints. This feature was tested
during the STS-85 flight in the following manner. When initial command
sequences were uplinked, a number of commands immediately following a
reset command were rejected by the flight software. This was due to the fact
that the initial flight rules were constructed with the understanding that
immediately following a reset, commands could be issued to the payload.

FIGURE 7. Payload operator Jason Willis uses DCAPS to command the DATA-CHASER payload.
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Actual operations showed that a delay of 30 seconds was needed before the
payload could accept commands. When this problem was noticed and iso-
lated, it was a simple manner to quickly update the DCAPS model to
require this delay so that future command sequences would execute without
problems. This aspect of each of modification is key in that spacecraft char-
acteristics and operating procedures constantly evolve throughout the

mission lifecycle as the spacecraft characteristics and mission priorities
evolve.

LESSONS LEARNED AND ISSUES REALIZED

In this section a number of challenges are described that have been
encountered in attempting to deploy planning and scheduling systems in
several domains, including science data analysis, ground station automation,
and spacecraft commanding. Specifically, discussed are issues relating to
HTN and operator-based representations for planning, representing and
reasoning about plan quality, acquiring, validating, and maintaining plan-
ning knowledge bases, and integration of planning and execution.

HTN Versus Operator Planning

Applied intelligence planning researchers have developed numerous
approaches to the task of correct and efficient planning. Two main
approaches to this task are operator-based planners and hierarchical task
network (HTN) planners. In this section, 2 number of advantages and dis-
advantages of these approaches are described in light of experiences in
developing several real-world planning systems (Estlin et al., 1997). While
both HTN and operator-based planners typically construct plans by search-
ing in a plan space, they differ considerably in how they express plan refine-
ment operators. Hierarchical task network planners generally specify plan
modifications in terms of flexible task reduction rules. Operator-based plan-
ners perform all reasoning at the lowest level of abstraction and provide
strict semantics for defining operator definitions. By virtue of their represen-
tation, HTN planners more naturally represent hierarchy and modularity. In
contract, operator-based plan refinements are more general since they can
cover many more planning situations.

In the applications presented in this paper, a hybrid planning approach
has been utilized that combines these two planning techniques. This
approach has proven to be an effective method for planning in real-world
applications. In developing these systems, the critical issue of planning repre-
sentation has been specifically examined. If domain knowledge can be natu-
rally represented in a planning system then

1. Tt will be easier to encode an initial knowledge base;
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2. fewer encoding errors will occur, leading to a higher performance system;
3. maintenance of the knowledge base will be considerably easier.

Thus, an important measure for evaluating HTN and operator-based
planning is how naturally each paradigm can represent key aspects of plan-
ning knowledge. Focus has been on four criteria: generality, hierarchy, flex-
ibility, and efficiency.

Many of the obstacles in applying planning techniques to real-world
problems can be characterized as representation difficulties. One advantage
to employing an HTN planner is the ability to use abstract representation
levels of domain objects and goals. This type of information is represented
by constructing an object or goal hierarchy, where more detailed informa-
tion such as object instances is at one end of the hierarchy, and more
general information such as broad types is at the other end. For instance, in
the DSN domain, different types of equipment (e.g., antennas, receivers) are
represented in this format. Allowing abstract representations of these items
enables one to represent the domain in an object-oriented form, which is
easier to write and reason about. Decomposition rules can refer to either
low- or high-level forms of a particular object or goal. Thus, more general
rules about receivers can refer to a high-level receiver object, while more
specialized information about particular receiver types is kept in smaller,
more detailed rules which refer to the related low-level receiver type. This
format allows domain information to be easily understood and updated
since domain details are kept separate from more general knowledge.
Overall, this representation contributes to a more concise and general
domain knowledge base.

Unfortunately, a modular representation often makes it difficult to rep-
resent more specialized intermodular constraints. These types of constraints
refer to information inside of several different decomposition rules and are
usually only applicable in certain situations. For example, when performing
receiver calibration in the DSN domain, it is sometimes necessary for high-
level rules to refer to low-level steps in order to represent certain constraints
as opposed to referring to a more general step. When using the Block-IV
receiver, very long baseline interferometry (VLBI) telemetry tracks directly
improve high-level ordering constraints on specific receiver calibration steps,
instead of on a more general calibrate-receiver goal. Figure 8 shows the
receiver calibration steps required for two different VLBI tracks; the left uses
a Block-V receiver and the right a Block-IV receiver. The shaded portions of
the graph indicate the specific steps that directly calibrate the receiver. In the
Block-V case, receiver calibration is mapped onto a single general operator.
However, in the Block-1V case it corresponds to five low-level steps, which
have ordering constraints imposed on them by the telemetry rule. Most
importantly, some of the ordering constraints from outside the receiver cali-
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FIGURE 8. VLBI Receiver Subplans.

bration steps must refer to specific steps within the calibration subplan. The
ordering constraints (4) refer to the middle step in the sublan (as opposed to
being before all of the steps or after all of the steps). To encode this iuforma-
tion in an HTN framework, one must use separate rules for tracks that
require these intermodular constraints. Unfortunately, this solution results
in less rule generality and increases the complexity of the domain definition.
A more satisfactory solution is to incorporate operator-based planning tech-
niques with the hierarchical representation. Instead of directly adding these
constraints to decomposition rules, one can implicitly represent them by
adding preconditions and effects to low-level track steps. This approach
permits intermodular ordering constraints to be separate from decomposi-
tion rules, thereby allowing rules to retain their modularity. Thus, HTN
approaches have the advantage of easily supporting a hierarchical represen-
tation. Operator-based approaches have the advantage of generality, since
they can cover many planning situations unconsidered by the knowledge
engineer. A hybrid HTN/operator-based approach allows an encoding that
supports hierarchy and generality, without requiring an overly large search
space.

Another advantage to using a hybrid system is the ability to encode
implicit constraint information. These are constraints that may not be
obvious when defining decomposition rules or operators, but are still neces-
sary for correct planning. For instance, in the DSN domain, it is important
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that an antenna not be moved to point at the final set of coordinates until
after precalibration has taken place, due to stray transmissions that occur
during some precalibration steps. One way to enforce this constraint is to
explicitly add ordering constraints to all precalibration rules that will
cause the antenna to be in a “stow ” position. Unfortunately, such a con-
straint may have to be specified numerous times if there are multiple rules to
which it applies. Another option is to use operator-based precondition/effect
analysis. Unfortunately, this option requires a number of extra precondi-
tions to be added and could possibly induce more search. A better solution
is to utilize both HTN and operator-based techniques. First, one can add a
protection to the main precalibration decomposition rule that forbids stray
transmissions when the antenna is “on point” during the entire precalibra-
tion process. Then, using operator-based methods, one can use conditional
effects to ensure that this requirement is enforced. Based on experience,
hybrid planning methods offer the greatest ﬂex1b111ty in representing these
types of implicit constraints.

Another notable difference between HTN and operator-based
approaches is that the HTN approach allows the encoding of specific action
sequences, while an operator-based approach often incurs significant search
to construct this same sequence. Conversely, when operators can be com-
bined in many different ways but still have interactions, an operator-based
representation can be a more concise, natural method of encoding these
constraints. In order to demonstrate this tradeoff an experiment was per-
formed where a knowledge engineer (KE) encoded a simplified portion of
the MVP image processing domain (Chien & Mortensen, 1996). This
portion represented a subproblem called image navigation, which is one of
the most complex subproblems in this domain. The KE developed three
planning models, one in which only operator-based techniques are used, one
where only HTN techniques were used, and one where both techniques were
used. Based on the results of this experiment, the pure operator-based repre-
sentation is inefficient from a search perspective. While only a small subset
of the operator combinations will actually be used in solving problems, this
type of framework requires that all operators be sufficiently accurate to rule
out all other combinations. Representing this problem in a pure HTN
framework was also difficult. Many complex combinations of dependencies
and interrelations require numerous decomposition rules. In the combined
HTN and operator-based framework, it is possible to represent different
parts of the plan generation process using operator-based and/or HTN
methods. Basic sequences can be easily represented using HTN rules. More
complex additions to each basic sequence can be represented through
operator-based constructs such as preconditions and condition effects. This
approach resulted in a reduced number of rules (1c compactness) and
avoidance of redundancy in the KB.
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Plan Quality

One hurdle that must be faced when applying planning techniques to
real-world problems is effectively representing and reasoning about plan
quality (Chien et al., 1996). In this section, some of the challenges that have
been encountered in this area for image processing are discussed—ground-
station automation and spacecraft commanding domains.

In the MVP image-processing application, an important concern is
output image quality. For a planning system to be able to represent large
portions of an analyst’s expertise, the planner must be able to represent and
reason about the effect of various image transformations on image quality.
For example, one of the most common image processing requests is for
mosaicking, which is the process of combining a number of smaller images
into a larger image. A frequent situation in mosaicking is that some of the
images can be navigated absolutely—these images contain features that
make it possible to exactly align these images (this is called absolute
navigation). However, the remainder of the images can only be correctly
placed on the ouput image by matching up points that are believed to be
common between them and other images (tiepoints). This is a more difficult
process known as relative navigation. When performing relative navigation,
there are various measures of the confidence of the navigation process (such
as residual errors). When processing these images, in order to produce a
high quality image, the VICAR script must take into account the relative
confidence values of alignment information from these different sources.
Information from absolute navigation should be weighed more than infor-
mation from relative navigation. And, relative navigation information is of
varying degrees of confidence. Ideally, an expert image processing planning
system would be able to reason about the navigation process and various
measures of image quality, to determine at runtime the best order in which
to process the images. In the best situation, the operator and plan represen-
tation would be able to explicitly represent these measures of image quality
"and at runtime execute the steps to ensure a high quality image. This would
require characterizations of plan quality relating to measurable runtime
attributes. A secondary, but also important concern for MVP, is the compu-
tational efficiency of the produced plan. If the image quality will be equiva-
lent, there are sometimes different methods of achieving the same image
processing goals but with different characteristics of computer runtime or
disk storage. If MVP can reason about these types of costs for plans, it will
be able to produce plans that are more acceptable to the analysts and scien-
tists.

Plan quality is a key concern when planning for ground station automa-
tion. Producing hlgh quality plans can greatly help reduce DSN operation
costs. Important issues include generating efficient plans that can reduce
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track setup and execution time and generating robust and/or flexible plans
that facilitate both error recovery and last minute track adjustments. One
important quality goal is to minimize the setup and execution time of a
track plan. First, the time to setup (precalibration) and reset (post-cali-
bration) the communications link should be minimized. Reducing this execu-
tion time allows more data to be returned per link setup. For instance, it can
take up to 2 hours to manually precalibrate a DSN 70-meter antenna com-
munications link for certain types of missions. Using an automated planning
system, this time can be reduced to approximately 30 minutes, where further
reductions in set-up time are limited by physical constraints of the antenna
subsystems themselves. Changes in post-calibration can also reduce preca-
libration time for a subsequent track. For instance, if a following track
requests a similar antenna operation to the one being currently executed, it
may be unnecessary and wasteful to reset many of the antenna subsystems.
Since many of the system settings will not vary between the two tracks,
resetting these systems will only cause extra time to be spent on recalibra-
tion during the second track. These types of reductions in operations time
can save thousands of dollars each time precalibration is performed. For this
reason, plan execution time is a primary measure of plan quality.

Track execution time can often be significantly reduced by exploiting
paralle]l path execution where the control of multiple subsystems is involved.
When developing a planning system to automatically generate antenna-
track plans, one would like the system to reason about plan execution time
as a measure of plan quality. Since there can often be more than one correct
plan for a particular antenna operation, it is important for a planning
system to be able to compare a set of final plans using user identified plan
quality measures. The planner, ASPEN, uses AI scheduling techniques to
schedule nonconflicting track steps in parallel to help provide a shorter plan
execution time. Other heuristics can also be easily incorporated that empha-
size minimizing plan execution time.

Another important quality goal is to produce flexible plans that can
check equipment status and respond accordingly (e.g., if the antenna is out
of lock then reacquire the signal, or if wind speeds are too high then delay
tracking). In particular, producing more flexible plans can allow for easier
error recovery. For example, an antenna directive may fail and require new
commands to be inserted into the plan, which may change some state condi-
tions and time tags. The plan needs to be flexible enough so that later com-
mands can still be properly executed even though these changes have
occurred. Also, flexibility can allow for easier replanning. A planning system
used for ground-station automation may have to replan during the course of
typical antenna operations. More flexible plans will allow for more efficient
replanning where plan modifications can be quickly made, such as inserting
new steps into a plan at various points. Flexible plans that allow for modifi-
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cation while still retaining their applicability are greatly valued since they
allow execution to quickly continue. The need for replanning is discussed in
more detail in the Integrated Planning and Execution section.

Plan quality is also a concern for spacecraft mission planning. Gener-
ating spacecraft command sequences require consideration of both hard and
soft constraints. The planner must be able to find plans that satisfy all rele-
vant hard constraints, which represent necessary constraint information, and
that appropriately optimize over soft constraints, which represent more
optional plan-quality improvements. Work in this area first concentrates on
a study of the metaphors used by mission operations personnel to specify
their preferences frequently occurring in missions operations. Current expe-
rience indicates that these preferences can be divided into three classes: 1)
activity preferences, 2) state preferences, and 3) resource preferences. Activity
preferences concern the existence and placement of activities in the plan.
Many of these preferences relate to the temporal placement of an activity or
to activity duration. Activity preferences may also include preferences to
maximize the number of activities, such as observations. A second class of
preferences involves state variables, which represents the state of a device or
subsystem over time (e.g., camera is “on” or “off”, aperture is “open” or
“closed”). Examples of this type of preference include constraints such as
keeping the imaging device closed when not in use or the preference to mini-
mize the power cycling of an instrument. A third class of preferences con-
cerns spacecraft resources (e.g, battery power, propellant). This class of
preferences would include choosing to minimize propei.ant usage or
choosing the thermal range of the spacecraft.

Once these preference language constructs have been identified, the next
step is to develop a formal semantics that defines the objective function for
plan optimization. This will enable a clear semantics for search and domin-
ance of one plan over another. Once the preference language has been speci-
fied and the semantics formalized, a formalization of local and global optima
is then developed based on these preference types. This work concentrates
on developing characterizations of local optima for heuristic search stra-
tegies that will hopefully be able to enable quick discovery of good solutions
with local optima guarantees (Aarts & Korst, 1990). In cases where it is
necessary to find higher quality solutions (with corresponding higher search
cost), random restart methods could be used to improve solution quality.

Knowledge Acquisition, Modeling, and Maintenance

A key bottleneck in applying Al planning techniques to a real-world
problem is the amount of effort required to construct, debug, verify, and
update (maintain) the planning knowledge base (Chien, 1998). In particular,
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planning systems must be able to compare favorably in terms of software
lifecycle costs to other means of automation such as scripts or rule-based
expert systems. An important component to reducing such costs is to
provide a good environment for developing planning knowledge bases.
Despite this situation, relatively little effort has been devoted to developing
an integrated set of tools to facilitate constructing, debugging, verifying, and
updating specialized knowledge structures used by planning systems.

While considerable research has focused on knowledge acquisition
systems for rule-based expert systems (Davis, 1979) and object-oriented/
inheritance knowledge bases with procedures and methods (Gil & Tallis,
1995), little work has focused on knowledge acquisition for specialized plan-
ning representations. Notable exceptions to this statement are DesJardins
(1994), which uses inductive learning capabilities and a simulator to refine
planning operators and Wang (1995) which uses expert traces to learn and a
simulator to refine planning operators. However, in many cases a simulation
capability is not available. In these situations the user needs assistance in
causally tracing errors and debugging from a single example. This assistance
is sorely needed to enable domain experts to write and debug domain theo-
ries without relying on Al people. Furthermore, planning knowledge base
maintenance is often overlooked. Such tools are also invaluable in tracking
smaller bugs, verifying KB coverage, and updating the KB as the domain
changes.! While these tools can draw much from causal tracking techniques
used in rule-based system (Davis, 1979), there are several aspects of planning
systems that differentiate them from rule-based systems—their specialized
representations and temporal reasoning capabilities. Two specialized repre-
sentations for planning are prevalent—task reduction rules and planning
operators. These representations, as well as the most common constraints
(ordering and codesignation constraints), have evolved so that specialized
reasoning algorithms must be adapted to support debugging.

Many types of knowledge encoding errors can occur: incorrectly defined
preconditions;-incorrectly defined effects, and incorrect variable specifi-
cations. Invariably, the end result is a mismatch between the planners model
of the legality of a plan and the model dictated by the domain (or domain
expert). Thus, the end symptoms of a knowledge base error can be broadly
classified into two categories.

Incorrect Plan Generation

This occurs when the planner is presented a problem and generates a
plan that does not achieve the goals in the current problem context. By
experience, the current problem and faulty solution can focus attention in
debugging the flaw in the knowledge base. By using the faulty plan to direct
the debugging process, the user can often focus on the incorrect link in the
plan (faulty protection or achievement), allowing for rapid debugging.
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Failure to Generate a Plan

This occurs when the planner is presented with a solvable problem, but
the planner is unable to find a solution. By experience, this type of failure is
far more difficult to debug. This is because the user does not have a particu-
lar plan to use to focus the debugging process. Thus, often a user would
manually write down a valid plan based on their mental model of the
domain, and then trace through the steps of the plan to verify that the plan
could be constructed. Because experience has been that detecting and debug-
ging failure-to-generate-a-plan cases has been more difficult, this work
focuses on:

1. Verifying that a domain theory can solve all problems deemed solvable
by the expert;

2. Facilitating debugging of cases where the domain theory does not allow
solution of a problem deemed solvable by the domain expert.

In general, most work on debugging knowledge bases has presumed the
existence of a sound and complete performance element (in this case the
planner), e.g., the problem-solving method and knowledge base are correct.
In theory these properties are also presumed but in practice it is acknow-
ledged that the planner is likely to be sound but incomplete (due to the size
of the search space and the general difficulty of proving a problem
unsolvable). However, practically speaking, the knowledge engineer is inter-
ested in developing a kn«wiedge base that a specific planner can use to solve
the problems of interest, rather than developing a knowledge base that in
theory specifies that a solution exists. Thus, tautologically the planner can
be viewed as complete, and the goal is to develop a knowledge base that is
semantically correct and organized such that the planner can produce solu-
tions for the relevant problems.

In response to the difficulties in developing and maintaining planning
knowledge bases, two types of tools have been developed to assist in
developing planning knowledge bases—static analysis tools and completion
analysis tools (Chien 1998). Static analysis tools analyze the domain know-
ledge rules and operators to see if certain goals can or cannot be inferred.
However, because of computational tractability issues, these checks must be
limited. Static analysis tools are useful in detecting situations in which a
faulty knowledge base causes a top-level goal or operator precondition to be
unachievable—frequently due to omission of an operator effect or a typo-
graphical error. '

Completion analysis tools operate at planning time and allow the
planner to complete plans that can achieve all but a few focused subgoals or
top-level goals. Completion analysis tools are useful in cases where a faulty
‘knowledge base does not allow a plan to be constructed for a problem that
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the domain expert believes is solvable. In the case where the completion
analysis tool allows a plan to be formed by assuming goals true, the domain
expert can then be focused on these goals as preventing the plan from being
generated.

In general, the classical planning task is undecidable (Chapman, 1987),
Because the static and completion analysis techniques in general operate by
solving planning problems, they too are solving undecidable problems. Of
course, the propositional versions of the algorithms later presented are
exceptions. In practice, of greater importance than the computational class
of these algorithms is their performance on the actual problems encountered.
These issues are briefly discussed in the section on Evaluation and Use.

In addition, in the area of spacecraft commanding, the assistance of
spacecraft operations personnel has been enlisted in developing the ASPEN
modeling language (Sherwood et al., 1998, Smith et al., 1998). Automated
scheduling and planning environment uses constructs based on common
spacecraft operations metaphors, facilitating the operations modeling effort
and enabling non-Al personnel to construct and debug models.

Integrated Planning and Execution

Historically, planning research has focused on a batch formulation of the
problem. In this approach planning is viewed as a step in the “sense, plan,
execute” paradigm in which plans are generated from scratch in an off-line
fashion. With automated planning being used in a wider range of applica-
tions, it is becoming increasingly apparent that plans are typically generated
once and revised numerous times in a continuous fashion. In this section
these shortcomings are illustrated in the context of spacecraft operation and
ground station planning scenarios.

An autonomous real-time control system must balance long-term and
short-term considerations. It must perform purposeful activities that ensure
long-term science goals, and short-term operations goals are achieved and
ensure that it maintains positive resource margins. This requires planning in
advance to avoid a series of shortsighted decisions that can lead to failure.
However, it must also respond in a timely fashion to a somewhat dynamic
and unpredictable environment. In terms of high-level, goal-oriented activ-
ity, command sequence plans must often be modified in the event of for-
tuitous events such as events completed early and setbacks such as failure to
acquire a guidestar for a science observation. Here is briefly described an
integrated planning and execution architecture that supports continuous
modification and updating of a current working plan in light of changing
operating context.

As already mentioned, an autonomous control system must respond ina
timely fashion to a (somewhat) dynamic, unpredictable environment. This
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situation is called dynamic planning, in which a plan must be continually
updated in light of changing operating context. In such an operations mode,
a planner would accept activity and state updates through a real-time inter-

face. Making the planner more timely in its responses has a number of bene-
fits:

e The planner can be more responsive to unexpected (e.g., unmodelable)
changes in the environment that would manifest themselves as updates on
the execution status of activities as well as monitored state and resource
values.

e The planner can reduce reliance on predictive models (e.g., inevitable
modeling errors), since it will be updating its plans continually.

e Fault protection and execution layers need worry about controlling over a
shorter time horizon (as the planner will replan within a shorter time
span).

e Because of the hierarchical reasoning taking place in the architecture,
there is no hard distinction between planning and execution—rather more
deliberative (planner) functions reside in the longer-term reasoning hori-
zons and the more reactive execution functions reside in the short-term
reasoning horizons. Thus, there is no planner to executive translation
process.

In a traditional “plan, sense, act” cycle, planning is considered a batch
process and the system operates on a relatively long-term planning horizon,
not making the system very responsive to change. To achieve a higher level
of responsiveness, a continuous planning approach is utilized (Chien et al.,
1999a). Rather than considering planning a batch process in which a planner
is presented with goals and an initial state, the planner has a current goal
set, a current state and projections into the future, and a current plan. At any
time an incremental update to the goals or current state may update the
planner process. This update may be an unexpected event or simply time
progressing forward. The planner is then responsible for maintaining a con-
sistent, satisfying plan with the most current information. This current plan
and projection is the planner’s estimation as to what it expects to happen in
the world if things go as expected. However, as things rarely go exactly as
expected, the planner stands ready to continually modify the plan. Current
iterative repair planning techniques enable incremental changes to the goals,
initial state, or plan, and then iteratively resolve any conflicts in the plan.
After each update, its effects will be propagated through the current projec-
tions, conflicts identified, and the plan updated (e.g., plan repair algorithms
invoked).

In this approach, the real-time software produces updates that require
responses by near and long-term activities for the system. The system’s state
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is modeled by a set of timeiines, which represent the current and expected
evolution of the system over time. This model includes the current state and
the projection of how the state will evolve in light of actions expected to
take place in the future. These actions are the current plan that is also reflec-
ted in the timelines as actions at future points in time.

At each iteration through the loop, as the world changes, the actual state
of the system drifts from the state expected by the timelines. The real-time
software updates the timeline models with notifications of actual state
values, resource values, start times, and completion times for activities. Each
of these updates, when synchronized with the current plan, may introduce
conflicts. A conflict is when an action in the plan is inappropriate—because
its required state and/or resource values violate the system constraints.
Whenever such a conflict exists the planner notes the conflict and performs
plan modifications to bring the plan back into sync with the current state
and future projections. Because this process is continuous, the plan rarely
has the opportunity to get significantly out of sync. As a result the high-level
actions of the system are more responsive to the actual state.

The continuous planner approach is being developed in the context of
two different systems: one for ground station automation and commanding
(closed loop execution and recovery (CLEaR)), and another for spacecraft
commanding as part of a larger common mission data systems (MDS) task.
For the MDS task a prototype was developed to demonstrate the feasibility
of a continuous planning approach to spacecraft commanding. The proto-
type was demonstrated by running on operational scenarios from the Deep
Space 4/Champollion (DS4) mission. This is a mission scheduled to launch
in 2003 in which a spacecraft lands on a comet in 2007 and returns a sample
of the comet to the earth in 2010.

In the simulation, the planner must take several soil samples and
perform in-situ science on these samples. The planner must coordinate drill-
ing and collecting of three soil samples and perform experiments (which
include baking two of the samples in an oven to study the gases released
during the heating) and storage of the third sample for return to earth.

In this demonstration three different class of events were demonstrated:

1. An error in the oven was introduced, which resulted in the continuous
planner (CP) moving the remaining activities to the backup oven and
continuing with operations.

2. The model of the estimated data compression was inaccurate causing the
data buffer to unexpectedly fill. In response, the planner was able to
foresee a data volume difficulty and respond by adding an uplink activity
to the schedule to free space for the remaining experiments.

3. The last capability demonstrated again resulted in the lack of accuracy in
the model. In this case, the simulator unexpectedly decreases the amount
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of power left in the battery. The planner projects that this does not leave
sufficient energy to complete the experiments and liftoff to return the
sample. Recognizing that this is a critical part of the mission the planner
removes the final experiment from the schedule to ensure adequate power
to complete the mission.

In conjunction with this incremental, continuous planner approach, a
hierarchical approach to planning is also being advocated. In this approach,
the long-term planning horizon is planned only at a very abstract level.
Shorter and shorter planning horizons are planned in greater detail, until
finally at the most specific level the planner plans only a short time in
advance (just in time planning).

The idea behind this hierarchical approach is that only very abstract
projections can be made over the long term and that detailed projections
can only be made in the short term. Hence, there is little utility in construc-
ting a detailed plan far into the future—chances are it will end up being
replanned anyway. At one extreme the short-term plan may not be
“planned” at all and may be a set of reactions to the current state in the
context of the near-term plan. This approach can be implemented in a
control loop by making high-level goals active regardless of their temporal
placement, but medium and low-level goals are only active if they occur in
the near future. Likewise, conflicts are only regarded as important if they are
high-level conflicts or if they occur in the near future. As the time of a con-
flict or goal approach, it will eventually become active and the elaboration/
planning process will then be applied to resolve the problem.

CONCLUSION

A number of lessons learned have been described in deploying automa-
ted planning and scheduling systems for space applications at JPL. Specifi-
cally, described have been issues relating to: HTN and operator-based
representations for planning, representing, and reasoning about plan
quality; acquiring, validating, and maintaining planning knowledge bases;
and integration of planning and execution. These issues have been described
and discussed in the context of systems that have been fielded in the areas of
science data analysis, ground station automation, and spacecraft autonomy.
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NOTES

1. For work in verifying rule-based systems, see O’Keefe and O’Leary (1993). For work on rule base
refinement using training examples {the analogue of a simulator for planning KB refinement) see
Ginsberg et al. (1988).
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